• <blockquote id="fficu"><optgroup id="fficu"></optgroup></blockquote>

    <table id="fficu"></table>

    <sup id="fficu"></sup>
    <output id="fficu"></output>
    1. ABB
      關(guān)注中國自動(dòng)化產(chǎn)業(yè)發(fā)展的先行者!
      CAIAC 2025
      2025工業(yè)安全大會(huì )
      OICT公益講堂
      當前位置:首頁(yè) >> 案例 >> 案例首頁(yè)

      案例頻道

      輪胎X光圖像瑕疵檢測Faster R-CNN算法改進(jìn)研究
      • 企業(yè):     領(lǐng)域:機器視覺(jué)     行業(yè):汽車(chē)     領(lǐng)域:智能制造    
      • 點(diǎn)擊數:2411     發(fā)布時(shí)間:2020-08-31 13:07:27
      • 分享到:

      作者:

      郭培林,陳金水,盧建剛(浙江大學(xué),浙江 杭州 310058)

      戴柏炯(杭州朝陽(yáng)橡膠有限公司,浙江 杭州 310018)

      史敦禹(中策橡膠(建德)有限公司,浙江 建德 311607)

      孫洪林(杭州中策清泉實(shí)業(yè)有限公司,浙江 杭州 314100)

      摘要:輪胎是我國國民經(jīng)濟的重要支柱,利用X光機對輪胎進(jìn)行質(zhì)量檢測在整個(gè)輪胎生產(chǎn)過(guò)程中是極其重要的一道工序。目前國內工廠(chǎng)普遍采用肉眼觀(guān)察輪胎X光圖像進(jìn)行識別,存在效率低下、人工成本高等一系列問(wèn)題,因此采用計算機視覺(jué)技術(shù)進(jìn)行自動(dòng)識別是今后的發(fā)展方向。本文將目標檢測算法Faster R-CNN應用于輪胎質(zhì)檢,并加以改進(jìn):(1)在模型中融合FPN(Feature Pyramid Network,特征金字塔網(wǎng)絡(luò )),用以解決輪胎瑕疵尺度變化大的問(wèn)題;(2)在算法中融合背景特征信息,對候選框進(jìn)行重排名,增加檢測模型最終的檢測精度。通過(guò)對某輪胎廠(chǎng)提供的輪胎X光圖像進(jìn)行瑕疵檢測對比表明,這些改進(jìn)措施提高了檢測模型的mAP(mean Average Precision)指標,具有良好的應用前景。

      關(guān)鍵詞:輪胎X光圖像;瑕疵檢測;深度學(xué)習;背景特征

      Abstract: The tire industry is an important part of China's nationale conomy. The use of X-ray machines for tie quality inspection is an extremely important process in the tire production process.At present, domestic factories generally use the naked eye to observe tire X-ray images for recognition. There are a series of problems such as low efficiency and high labor cost. Therefore,automatic identification by computer vision technology is the future development direction. In this paper, the Faster R-CNN is applied to tire quality inspection, and the following improvements are made: Firstly, FPN is integrated in the model to solve the problem of large changes in tire defect scale; secondly, the background feature information is integrated in the algorithm, the RoIs is re-ranked to increase the final detection accuracy of the detection model. The comparison of defect detection on the tire X-ray image shows that these improvement measures improve the mAP value of the detection model and have a good application prospect.

      Key words: Tire X-ray image; Defect detection; Deep learning; Background feature

      在線(xiàn)預覽:輪胎X光圖像瑕疵檢測Faster R-CNN算法改進(jìn)研究

      摘自《自動(dòng)化博覽》2020年8月刊

      熱點(diǎn)新聞

      推薦產(chǎn)品

      x
      • 在線(xiàn)反饋
      1.我有以下需求:



      2.詳細的需求:
      姓名:
      單位:
      電話(huà):
      郵件:
      欧美精品欧美人与动人物牲交_日韩乱码人妻无码中文_国产私拍大尺度在线视频_亚洲男人综合久久综合天

    2. <blockquote id="fficu"><optgroup id="fficu"></optgroup></blockquote>

      <table id="fficu"></table>

      <sup id="fficu"></sup>
      <output id="fficu"></output>