作者:王輝東,陳鋒(國網(wǎng)浙江杭州市余杭區供電有限公司,浙江 杭州 310007)
摘要:高壓開(kāi)關(guān)柜發(fā)生局部放電時(shí)產(chǎn)生的超聲波信號中存在著(zhù)大量的信息,局部放電作為開(kāi)關(guān)柜絕緣故障的重要征兆及表現方式,其類(lèi)型的識別對于開(kāi)關(guān)柜絕緣狀態(tài)的評估具有重要的意義。為了準確地識別高壓開(kāi)關(guān)柜局部放電類(lèi)型,采用經(jīng)驗模態(tài)分解(EMD)的方法對局放信號進(jìn)行分解并提取能量信息,利用支持向量機(SVM)建立高壓開(kāi)關(guān)柜局部放電信號分類(lèi)模型。實(shí)驗結果驗證了上述方法的有效性。為了解決SVM核函數g和非負懲罰因子C主觀(guān)選取問(wèn)題,運用灰狼算法(GWO)優(yōu)化這兩個(gè)參數。研究結果表明,與SVM、PSO-SVM和GA-SVM相比,GWOSVM可有效提高開(kāi)關(guān)柜局放信號分類(lèi)精度。
關(guān)鍵詞:經(jīng)驗模態(tài)分解;灰狼算法;支持向量機;分類(lèi)識別;遺傳算法;粒子群算法
Abstract: There is a lot of information in ultrasonic signals generated when partial discharge occurs in high voltage switchgear. Partial discharge is an important sign and manifestation of insulation failure of switchgear. The identification of its type is of great significance for the assessment of insulation state of switchgear. In order to identify the partial discharge type of high voltage switchgear accurately, the empirical mode decomposition (EMD) method is used to decompose the local discharge signal and extract the energy information. A support vector machine (SVM) is used to establish the classification model of partial discharge signal of high voltage switchgear.Experimental results verify the effectiveness of the above methods. In order to solve the problem of subjective selection of SVM kernel function g and non-negative penalty factor C,the gray Wolf algorithm (GWO) was used to optimize these two parameters. Compared with SVM, PSO-SVM and GA-SVM,GWO-SVM can effectively improve the classification accuracy of switching cabinet signals.
Key words: Empirical modal decomposition; Gray wolf algorithm;Support vector machine; Classification and identification;Genetic algorithms; Particle swarm optimization
在線(xiàn)預覽:基于EMD分解和GWO-SVM的開(kāi)關(guān)柜局放信號識別
摘自《自動(dòng)化博覽》2019年12月刊